Wednesday, May 8, 2013

If tan^4 (x) +tan^2 (x)=1, then find cos^4(x)+cos^2(x)



If tan^4+tan^2=1 Then Find cos^4+cos^2

Your Answer:
Assuming you mean tan^4 (x) +tan^2 (x)=1 Then Find cos^4(x)+cos^2(x)

we can write

%0D%0Atan%5E4+%28x%29+%2Btan%5E2+%28x%29=1%0D%0A


%0D%0Atan%5E2%28x%29%2A%28tan%5E2+%28x%29%2B1%29=1%0D%0A


%0D%0A%28tan%5E2+%28x%29%2B1%29=cot%5E2%28x%29%0D%0A


%0D%0Asec%5E2%28x%29=%28cos%5E2%28x%29%29%2F%28sin%5E2%28x%29%29%0D%0A


%0D%0A%0D%0A1%2Fcos%5E2%28x%29=%28cos%5E2%28x%29%29%2F%28sin%5E2%28x%29%29%0D%0A



%0D%0Acos%5E4%28x%29=sin%5E2%28x%29%0D%0A


and adding cos%5E2%28x%29
we get


%0D%0Acos%5E4%28x%29%2Bcos%5E2%28x%29=sin%5E2%28x%29%2Bcos%5E2%28x%29%0D%0A

which is 1

:)

No comments: