Friday, April 4, 2014

Find a real solution for: x^3+10x=80

We can use Newton's method. Writing f(x)=x^3+10x-80, and f'(x)=3x^2+10 and writing as a sequence we can see:
x%5Bn%2B1%5D=x%5Bn%5D-%28x%5Bn%5D%5E3%2B10x%5Bn%5D-80%29%2F%283x%5Bn%5D%5E2%2B10%29
For a reasonable first guess we can use the fact that when x=3, the LHS of the original equation is 57 and when x=4, LHS=104. So let's split the difference and choose x=3.5
This gives us...

x%5B2%5D=3.545454
x%5B3%5D=3.54499
x%5B4%5D=3.54499
so probably close enough... 

No comments: